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1. Introduction
In the last 20 years, the availability of massive amounts
of data in electronic form and the spectacular advances in
computational power have led to the development of the
field of data mining (or knowledge discovery) that is at the
center of modern scientific computation. Two central prob-
lems in this development (as well as in classical statistics)
are data classification and regression. To the best of our
knowledge, popular methods for these problems include:
(1) Decision trees for classification and regression

(Breiman et al. 1984). Decision trees recursively split the
data along a variable into hyper-rectangular regions. After
this forward propagation is complete, backward propaga-
tion (or pruning) is performed to prevent over-fitting the
model to the data set. Its main shortcoming is its fundamen-
tally greedy approach. Classification and regression trees
(CART) (Breiman et al. 1984) is the leading work for this
model. Bennett and Blue (1984) find a globally optimal
decision tree, but the structure of the tree needs to be pre-
fixed. C5.0 (Quinlan 1993) is another popular method that
is similar in spirit to CART. CRUISE (Kim and Loh 2000)
is a more recent version of CART that allows for multi-
variate partitions (thus, heuristically partitioning the input
regions into polyhedral regions) and minimizes bias in the
variable selection step.
(2) Multivariate adaptive regression splines (MARS)

(Friedman 1991) for regression. Like CART, MARS also
partitions the data into regions but fits continuous splines or
basis functions to each region, thus maintaining continuity
of the predicted values among neighboring regions.

(3) Support vector machines (SVM) (Vapnik 1999,
Rifkin 2002, Mangasarian 1965) for classification. In its
simplest form, SVM separates points of different classes
by a single hyperplane. More sophisticated SVM methods
find a separating hyperplane in a higher dimensional space,
leading to a nonlinear partitioning. In all cases, the opti-
mal separating hyperplane is modeled as a convex quadratic
programming problem.
Decision trees and MARS are heuristics in nature and

are closer to the tradition of statistical inference meth-
ods. SVM belongs to the category of separating hyperplane
methods, utilize formal continuous optimization techniques
(quadratic optimization), and are closer to the tradition of
machine learning and mathematical programming. It is fair
to say that all these methods (to various degrees) are at the
forefront of data mining and have had significant impact in
practical applications. Commercial software is available for
all these methods, facilitating their wide applicability.
While continuous optimization methods have been

widely used in statistics and have had a significant impact
in the last 30 years (a classical reference is Arthanari and
Dodge 1993), integer optimization has had very limited
impact in statistical computation. While the statistics com-
munity has long recognized that many statistical problems,
including classification and regression, can be formulated
as integer optimization problems (Arthanari and Dodge
1993 contains several integer optimization formulations),
the belief was formed in the early 1970s that these meth-
ods are not tractable in practical computational settings.
Due to the success of the above methods and the belief
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of integer optimization’s impracticality, the applicability of
integer optimization methods to the problems of classifica-
tion and regression has not been seriously investigated.
Our objective in this paper is to do exactly this—to

develop a methodology for classification and regression
that utilizes state-of-the-art integer optimization methods to
exploit the discrete character of these problems. We were
motivated by the significant advances in integer optimiza-
tion in the past decade that make it possible to solve large-
scale problems within practical times. We have created a
software package based on integer optimization that we
call classification and regression via integer optimization
(CRIO), which we compare to the state-of-the-art meth-
ods outlined earlier. While CRIO’s distinguishing feature
is mixed-integer optimization, we have incorporated certain
elements of earlier methods that have been successful in
our attempt to make CRIO applicable in diverse real-world
settings.
We view our contribution as twofold:
(1) To bring to the attention of the statistics and data

mining community that integer optimization can have a sig-
nificant impact on statistical computation, and thus moti-
vate researchers to revisit old statistical problems using
integer optimization.
(2) To show that CRIO is a promising method for classi-

fication and regression that matches and often outperforms
other state-of-the-art methods outlined earlier.
The structure of this paper is as follows. In §2, we

give an intuitive presentation of the geometric ideas of our
approach for both classification and regression to facili-
tate understanding, and provide motivation to the globally
optimal nature of CRIO. In §§3 and 4, we develop CRIO
for classification and for regression, respectively. In §5, we
compare CRIO with logistic regression, least-square regres-
sion, neural networks, decision trees, SVMs, and MARS
on generate and real data sets. We present our conclusions
in the final section.

2. An Intuitive Overview of CRIO
In this section, we present the geometric ideas of our
approach intuitively (first with respect to classification and
then with respect to regression) to facilitate understanding
of the mathematical presentation in §§3 and 4.

2.1. The Geometry of the Classification Approach

Given n data points �xi� yi�, xi ∈ �d, yi ∈ �0�1	, and i =
1� 
 
 
 � n, we want to partition �d into a small number of
regions that only contain points of the same class. Consider,
for example, the points in Figure 1. Figure 2 illustrates the
output of CRIO.
In the first step, we use a mixed-integer optimization

model to assign Class 1 points into K groups1 (K is a
user-defined parameter), such that no Class 0 point belongs
in the convex hull of a Class 1 group. We group Class 1
points instead of Class 0 points, without loss of generality,

Figure 1. A given set of training data. Class 0 points
are represented with an “o” and Class 1
points are represented by an “x.”
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throughout the paper. Clearly, we want to keep K small
(e.g., less than five) to avoid over-fitting. Given the pres-
ence of outliers, it might be infeasible to use K groups
(see Figure 3). For this purpose, we further enhance the
mixed-integer optimization model by enabling it to elimi-
nate a pre-specified number of outliers. Having defined K
groups at the end of this phase, we use quadratic optimiza-
tion methods to represent groups by polyhedral regions—an
approach inspired by SVMs. Finally, we eliminate redun-
dant faces of these polyhedra by iteratively solving linear
optimization problems. After the final sets of polyhedra are
defined, we classify a new point x0 as Class 1, if it is con-
tained in any of the K polyhedra, and as Class 0, otherwise.
To reduce the dimension of the mixed-integer optimization
model and thus reduce computation time, we preprocess the
data so that points form small clusters using a clustering
algorithm (see Figure 4).

Figure 2. The output of CRIO.
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Figure 3. Illustration of outliers in the classification
data. Points A and B are Class 0 outliers.
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2.2. The Geometry of the Regression Approach

In a classical regression setting, we are given n data points
�xi� yi�, xi ∈ �d, yi ∈ �, and i = 1� 
 
 
 � n. We wish to find
a linear relationship between xi and yi, i.e., yi ≈ �′xi for
all i, where the coefficients � ∈�d are found by minimizing∑n

i=1�yi − �′xi�
2 or

∑n
i=1 �yi − �′xi�. CRIO seeks to find

K disjoint regions Pk ⊂ �d and corresponding coefficients
�k ∈ �d, k = 1� 
 
 
 �K, such that if x0 ∈ Pk, our prediction
for y0 will be �y0 = �′

kx0. Given the points in Figure 5 where
xi ∈�, Figure 6 illustrates the output of CRIO.
CRIO first solves a mixed-integer optimization model to

assign the n points into K groups (where K is a user-defined
parameter). In addition, the mixed-integer optimization is
further enhanced to detect and eliminate outlier points in
the data set (see Figure 7). In contrast, traditional regres-
sion models deal with outliers after the slopes have been
determined, by examining which points contribute the most

Figure 4. Data points are grouped into small clusters in
x-space.
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Figure 5. A given set of training data for regression
with d = 1.
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to the total prediction error (see Rousseeuw and Leroy
1987 and Ryan 1997). This procedure can often be deceiv-
ing because the model is heavily influenced by the out-
lier points. After the points are assigned to the K groups,
we determine the coefficients �k that best fit the data for
group k, for k = 1� 
 
 
 �K, and define polyhedra Pk to rep-
resent each group using linear optimization methods. After
the coefficients and polyhedra are defined, we predict the y0
value of a new point x0 as we outlined earlier. CRIO does
not, in fact, create a partition of �d, so it is possible that a
new point x0 might not belong to any of the Pks.

2 In such a
case, we assign it to the region Pr that contains the major-
ity among its F (a user-defined number) nearest neighbors
in the training set, and make the prediction �y0 = �′

rx0. Sim-
ilarly to the classification model, we preprocess the data

Figure 6. The output of CRIO, where the regression
coefficient or slope is different for the two
regions.
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Figure 7. Illustration of outliers in regression data.
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by clustering them into small clusters to reduce the dimen-
sion and thus the computation time of the mixed-integer
optimization model (see Figure 8).
In summary, CRIO has a common approach to both prob-

lems of classification and regression: (a) preprocess data
by assigning points to clusters to reduce the dimensional-
ity of the mixed-integer optimization problems solved next;
(b) solve a mixed integer-optimization problem that assigns
clusters to groups and removes outliers. In the case of
regression, the model also selects the regression coefficients
for each group; and (c) solve continuous optimization prob-
lems (quadratic optimization problems for classification
and linear optimization problems for regression) that assign
groups to polyhedral regions.

2.3. Motivation for CRIO

The initial motivation for both the classification and regres-
sion component of CRIO was to develop a globally optimal

Figure 8. Data points clustered in �x� y�-space.

–10 –8 –6 –4 –2 0 2 4 6 8 10
–5

0

5

10

15

20

25

X (explanatory variable)

Y
 (

de
pe

nd
en

t v
ar

ia
bl

e)
version of CART (Breiman et al. 1984). We soon discov-
ered that a method that partitions the input space with
hyperplanes can be modeled far more tractably than a
model using univariate division rules, which might be
surprising, given that the former model might appear to
be a generalization of the latter. Thus, our approach can
be considered to be a globally optimal classification and
regression tree that, unlike the original version of CART,
partitions the input space with hyperplanes. Our method is
also distinct from SVMs with linear kernels because we
might use multiple hyperplanes to partition the input space,
whereas SVMs use a single hyperplane.
We provide Figure 9 as a simple illustration of the behav-

ior of classification trees, SVMs, and CRIO, on the famous
checkerboard data set. A point shown as “x” is one class
and “o” is another. Although the data set might appear to
be ideal for univariate classification trees, we see that the
method generates many more divisions than necessary. This
is because the model made mistakes in the initial partitions,
thus requiring several small subsequent partitions to cor-
rect the initial ones. We see similar behaviors with multi-
variate classification trees, where many more partitions are
made than necessary to correct initial errors. These exam-
ples illustrate the significant advantage of a globally opti-
mal solution. The classification component of CRIO makes
very similar assumptions as multivariate classification trees;
however, the global optimal solution of CRIO results in
a more robust solution. The globally optimal nature of
SVM’s solutions, as well as its flexibility, also results in
a good partitioning of this data set, although the model
assumptions of CRIO are better suited for this particular
example.

3. CRIO for Classification
In this section, we present our methods for two-class clas-
sification problems. As outlined in §2.1, we first assign
both Class 1 and Class 0 points into clusters (§3.2), then
assign Class 1 clusters to groups via the use of a mixed-
integer optimization model that also detects outliers (§3.3).
Section 3.4 presents the methodology of assigning polyhe-
dra to groups, and §3.5 summarizes the overall algorithm
for binary classification. We start by presenting the basic
mixed-integer optimization model in §3.1, which forms the
basis of our final approach.

3.1. The Mixed-Integer Optimization Model

The training data consist of n observations �xi� yi�, i =
1� 
 
 
 � n, with xi ∈ �d and yi ∈ �0�1	. Let m0 and m1 be
the number of Class 0 and Class 1 points, respectively. We
denote Class 0 and Class 1 points by x0i , i = 1� 
 
 
 �m0,
and x1i , i = 1� 
 
 
 �m1, respectively. Let M0 = �1� 
 
 
 �m0	,
M1 = �1� 
 
 
 �m1	, and 	K = �1� 
 
 
 �K	.
We want to partition Class 1 points into K disjoint

groups, so that no Class 0 point can be expressed as a con-
vex combination of these points. Let Gk be the set indices
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Figure 9. Input space partition of the checkerboard data set using univariate classification trees (top left), multivariate
classification trees (top right), SVM with Gaussian kernels (bottom left), and CRIO (bottom right).
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of Class 1 points that are in group k, where
⋃

k∈ 	K Gk =M1

and Gk ∩Gk′ = �, k�k′ ∈ 	K�k �= k′. Thus, we require that
the following system is infeasible for all i ∈M0 and k ∈ 	K:∑
j∈Gk

�jx
1
j = x0i �

∑
j∈Gk

�j = 1�

�j � 0� j ∈Gk


(1)

From Farkas’ lemma, system (1) is infeasible if and only
if the following problem is feasible:
p′x0i + q < 0�

p′x1j + q � 0� j ∈Gk

(2)

We consider the optimization problem:
zk� i =maximize �

subject to p′x0i + q �−��

p′x1j + q � 0� j ∈Gk�

0� � � 1


(3)

If zk� i > 0, system (2) is feasible and thus problem (1)
is infeasible. If zk� i = 0, system (2) is infeasible and thus
problem (1) is feasible, i.e., x0i is in the convex hull of the
points x1j , j ∈ Gk. We add the constraint � � 1 to prevent
unbounded solutions. Note that problem (3) seeks to find a
hyperplane p′x+ q = 0 that separates point x0i from all the
Class 1 points in group k.
We want to expand problem (3) for all k ∈ 	K and i ∈M0.

If we knew which group each Class 1 point belonged to,
then we would consider

z=maximize �

subject to p′
k� ix

0
i +qk�i�−�� i∈M0� k∈ 	K�

p′
k� ix

1
j +qk�i�0� i∈M0� k∈ 	K� j ∈Gk�

��1


(4)

To determine if we can assign Class 1 points into K

groups such that z > 0, we define decision variables for
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k ∈ 	K and j ∈M1:

ak� j =


1 if x1j is assigned to group k (i.e., j ∈Gk��

0 otherwise.
(5)

We include the constraints p′
k� ix

1
j + qk� i � 0 in problem (4)

if and only if ak� j = 1, i.e.,

p′
k� ix

1
j + qk� i �M�ak� j − 1��

where M is a large positive constant. Note, however, that
we can re-scale the variables pk� i and qk� i by a positive
number, and thus we can take M = 1, i.e.,

p′
k� ix

1
j + qk� i � ak� j − 1


Thus, we can check whether we can partition Class 1
points into K disjoint groups such that no Class 0 points
are included in their convex hull, by solving the following
mixed-integer optimization problem:

z∗ =maximize �

subject to p′
k� ix

0
i + qk� i �−�� i ∈M0� k ∈ 	K�

p′
k� ix

1
j + qk� i � ak� j − 1�

i ∈M0� k ∈ 	K� j ∈M1�∑K
k=1 ak� j = 1� j ∈M1�

�� 1�

ak� j ∈ �0�1	


(6)

If z∗ > 0, the partition into K groups is feasible; while if
z∗ = 0, it is not, requiring us to increase the value of K.

3.2. The Clustering Algorithm

Problem (6) has Km0�d+1�+1 continuous variables, Km1

binary variables, and Km0 +Km0m1 +m1 rows. For large
values of m0 and m1, problem (6) becomes expensive to
solve. Alternatively, we can drastically decrease the dimen-
sion of problem (6) by solving a hyperplane for clusters of
points at a time instead of point by point.
We develop a hierarchical clustering-based algorithm that

preprocesses the data to create clusters of Class 0 and
Class 1 points. Collections of Class 0 (Class 1) points
are considered a cluster if there are no Class 1 (Class 0)
points in their convex hull. If we preprocess the data to
find K0 Class 0 clusters and K1 Class 1 clusters, we can
modify problem (6) (see formulation (9) below) to have
KK0�d+1�+1 continuous variables, KK1 binary variables,
and Km0+KK0m1+K1 rows.
The clustering algorithm applies the hierarchical cluster-

ing methodology (see Johnson and Wichern 1998) where
points or clusters with the shortest distances are merged
into a cluster until the desired number of clusters is

achieved. For our purposes, we need to check whether a
merger of Class 0 (Class 1) clusters will not contain any
Class 1 (Class 0) points in the resulting convex hull. We
solve the following linear optimization problem to check
whether Class 1 clusters r and s can be merged:

�∗ =maximize �

subject to p′
ix
0
i + qi �−�� i ∈M0�

p′
ix
1
j + qi � �� j ∈Cr ∪Cs�

(7)

where Cr and Cs are the set of indices of Class 1 points in
clusters r and s, respectively.
If �∗ > 0, then clusters r and s can merge; while if �∗ =

0, they cannot because there is at least one Class 0 point
in the convex hull of the combined cluster. The overall
preprocessing algorithm that identifies clusters of Class 1
points is as follows:

1. Initialize: K �=m1, k �= 0.
2. while k < K do
3. Find the clusters with minimum pairwise

distance—call these r and s.
4. Solve problem (7) on clusters r and s.
5. if �∗ = 0 then
6. k �= k+ 1
7. else
8. Merge clusters r and s.
9. K �=K − 1, k �= 0.
10. end if
11. k �= k+ 1.
12. end while

In the start of the algorithm, each point is considered a
cluster, thus K =m1. On line 3, the minimum pairwise dis-
tances are calculated by comparing the statistical distances3

between the centers of all the clusters. We define the center
of a cluster as the arithmetic mean of all the points that
belong to that cluster. In the merging step on line 4, these
centers are updated. Finding clusters for Class 0 follows
similarly.
After we have K0 and K1 clusters of Class 0 and Class 1

points, respectively, we run a modified version of problem
(6) to assign the K1 Class 1 clusters to K groups, where
K < K1 �m1. Let 	K0 = �1� 
 
 
 �K0	 and 	K1 = �1� 
 
 
 �K1	.
Let C0

t , t ∈ 	K0, be the set of indices of Class 0 points in
cluster t and C1

r , r ∈ 	K1, be the set of indices of Class 1
points in Cluster r . We define the following binary vari-
ables for r ∈ 	K1 and k ∈ 	K:

ak� r =
{
1 if cluster r is assigned to group k�

0 otherwise.
(8)

Analogously to problem (6), we formulate the following
mixed-integer optimization problem for clusters:

maximize �

subject to p′
k� tx

0
i + qk� t �−�� i ∈C0

t � t ∈ 	K0� k ∈ 	K�
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p′
k� tx

1
j + qk� t � ak� r − 1�

t ∈ 	K0� r ∈ 	K1� k ∈ 	K� j ∈C1
r �

K∑
k=1

ak� r = 1� r ∈ 	K1�

ak� r ∈ �0�1	

(9)

If ak� r = 1 in an optimal solution, then all Class 1 points in
cluster r are assigned to group k, i.e., Gk =

⋃
�r �ak� r=1	 C

1
r .

3.3. Elimination of Outliers

In the presence of outliers, it is possible that we may need
a large number of groups—possibly leading to over-fitting.
A point can be considered an outlier if it lies significantly
far from any other point of its class (see Figure 3 for an
illustration). In this section, we outline two methods that
remove outliers: (a) based on the clustering algorithm of the
previous section, and (b) via an extension of problem (9).

Outlier Removal via Clustering. The clustering me-
thod of §3.2 applied on Class 0 points would keep outlier
points in its own cluster without ever merging them with
any other Class 0 cluster. Thus, after K0 clusters are found,
we can check the cardinality of each of the clusters and
eliminate those with very small cardinality—perhaps less
than 1% of m0. Such a procedure can similarly be done on
Class 1 points.

Outlier Removal via Optimization. Figure 3 illus-
trates how outlier points can prevent CRIO from grouping
Class 1 points with small K, i.e., problem (9) can return
only a trivial solution where � = 0, pk� i = 0, qk� i = 0, and
the ak� js are assigned arbitrarily. We want to modify prob-
lem (9) to eliminate or ignore outlier points that prevent us
from grouping Class 1 points into K groups.
One possible approach is to assign a binary decision vari-

able to each point, so that it is removed if it is equal to
one and not removed otherwise. Such a modification can
be theoretically incorporated into formulation (9), but the
large increase in binary variables can make the problem
difficult to solve.
We propose a different approach that modifies problem

(9) to always return a partition of Class 1 points so that the
total margin of the violation is minimized. Problem (10)
is such a model, where �0i and �1j are violation margins
corresponding to Class 0 and Class 1 points, respectively.
The model is as follows:

minimize
m0∑
i=1

�0i +
m1∑
j=1

�1j

subject to p′
k�tx

0
i +qk�t �−1+�0i � i∈C0

t � t∈ 	K0� k∈ 	K�

p′
k� tx

1
j + qk� t �−M + �M + 1�ak� r − �1j �

t ∈ 	K0� k ∈ 	K� r ∈ 	K1� j ∈C1
r �

K∑
k=1

ak� r = 1� r ∈ 	K1�

ak� r ∈ �0�1	� �0i � 0� �1j � 0�
(10)

where M is a large positive constant.
As in problem (9), the first constraint of problem (10)

requires p′
k� tx

0
i + qk� t to be strictly negative for all Class

0 points. However, if a point x0i cannot satisfy the con-
straint, problem (10) allows the constraint to be violated,
i.e., p′

k� tx
0
i + qk� t can be positive if �0i > 1. Similarly, prob-

lems (9) and (10) require p′
k� tx

1
j + qk� t to be nonnegative

when ak� r = 1 and arbitrary when ak� r = 0. However, (10)
allows p′

k� tx
1
j + qk� t to be negative even when ak� r = 1

because the second constraint becomes p′
k� tx

1
j + qk� t � 1−

�1j when ak� r = 1, and the left-hand side can take on neg-
ative values if �1j > 1. Thus, by allowing �0i and �1j to be
greater than one when necessary, problem (10) will always
return K Class 1 groups by ignoring those points that ini-
tially prevented the groupings. These points with �0i > 1
and �1j > 1 can be considered outliers and be eliminated.

3.4. Assigning Groups to Polyhedral Regions

The solution of problem (10) results in K disjoint groups of
Class 1 points, such that no Class 0 point is in the convex
hull of any of these groups. Our objective in this section
is to represent each group k geometrically with a polyhe-
dron Pk. An initially apparent choice for Pk is to use the
solution of problem (10), i.e.,

Pk = �x ∈�d � p′
k� tx�−qk� t� k ∈ 	K� t ∈ 	K0	


Motivated by the success of SVMs (see Vapnik 1999),
we present an approach of using hyperplanes that separate
the points of each class such that the minimum Euclidean
distance from any point to the hyperplane is maximized.
This prevents over-fitting the model to the training data set
because it leaves as much distance between the boundary
and points of each class as possible.
Our goal is to find a hyperplane

�′
k� tx= !k� t

for every group k, k ∈ 	K, of Class 1 points and for every
cluster t, t ∈ 	K0, of Class 0 points such that all points in
cluster t are separated from every point in group k so that
the minimum distance between every point and the hyper-
plane is maximized. The distance, d�x��k� t�!k� t�, between
a point x and the hyperplane �′

k� tx= !k� t , is

d�x��k� t�!k� t�=
�"�

��k� t�
� where " =�′

k� tx−!k� t


Thus, we can maximize d�x��k� t�!k� t� by fixing �"� and
minimize ��k� t�2 = �′

k� t�k� t , thus solving the quadratic
optimization problem:

minimize �′
k� t�k� t

subject to �′
k� tx

0
i � !k� t + 1� i ∈C0

t �

�′
k� tx

1
j � !k� t − 1� j ∈Gk


(11)
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Figure 10. Before eliminating redundant constraints.
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We solve problem (11) for each t ∈ 	K0 and k ∈ 	K, and find
KK0 hyperplanes. Thus, for each group k, the correspond-
ing polyhedral region is

Pk = �x ∈�d ��′
k� tx� !k� t� t ∈ 	K0	
 (12)

The last step in our process is the elimination of redundant
hyperplanes in the representation of polyhedron Pk given in
Equation (12). Figures 10 and 11 illustrate this procedure.
We can check whether the constraint

�′
k� t0

x� !k� t0
(13)

is redundant for the representation of Pk by solving the fol-
lowing linear optimization problem (note that the decision
variables are x):

wk� t0
=maximize �′

k� t0
x

subject to �′
k� tx� !k� t� t ∈ 	K0\�t0	�

�′
k� t0

x� !k� t0
+ 1


(14)

Figure 11. After eliminating redundant constraints.
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We have included only the last constraint to prevent prob-
lem (14) from becoming unbounded. If wk� t0

� !k� t0
, then

constraint (13) is implied by the other constraints defin-
ing Pk, and thus it is redundant. However, if wk� t0

> !k� t0
,

then constraint (13) is necessary for describing the polyhe-
dron Pk. To summarize, the following algorithm eliminates
all redundant constraints.

1. for k = 1 to K do
2. for t0 = 1 to K0 do
3. Solve problem (14).
4. if wk� t0

� !k� t0
then

5. Eliminate constraint �′
k� t0

x� !k� t0
.

6. end if
7. end for
8. end for

3.5. The Overall Algorithm for Classification

The overall algorithm for classification is as follows:

1. Preprocessing. Use the clustering algorithm outlined
in §3.2 to find clusters. Eliminate clusters with cardinality
less than 1% of m0 (m1) for Class 0 (Class 1) clusters.
2. Assign clusters to groups. Solve the mixed-integer

optimization problem (10) to assign clusters of Class 1
points to groups, while eliminating potential outliers.
3. Assign groups to polyhedral regions. Solve the

quadratic optimization problem (11) to find hyperplanes
that define the polyhedron of each Class 1 group.
4. Eliminate redundant constraints. Remove redun-

dant constraints from the polyhedra following the algorithm
outlined at the end of §3.4.

After CRIO determines the nonredundant representations
of the polyhedra, the model is used to predict the class of
new data points. If the point lies in any of the K polyhedra,
we label the point as a Class 1 point. If the point is not
contained in any of the polyhedra, then we label the point
as a Class 0 point.

4. CRIO for Regression
In this section, we present in detail our approach for regres-
sion. For presentation purposes, we start in §4.1 with an
initial mixed-integer optimization model to assign points to
groups, which, while not practical because of dimensional-
ity problems, forms the basis of our approach. As outlined
in §2.2, we first assign points to clusters (§4.2), then assign
clusters to groups of points (§4.3), which we then repre-
sent by polyhedral regions Pk (§4.4). In §4.5, we propose
a method of automatically finding nonlinear transforma-
tions of the explanatory variables to improve the predictive
power of the method. Finally, we present the overall algo-
rithm in §4.6.

4.1. Assigning Points to Groups: An Initial Model

The training data consist of n observations �xi� yi�, i =
1� 
 
 
 � n, with xi ∈ �d and yi ∈ �. We let N = �1� 
 
 
 � n	,
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	K = �1� 
 
 
 �K	, and M be a large positive constant. We
define binary variables for k ∈ 	K and i ∈N :

ak� i =


1 if xi is assigned to group k�

0 otherwise.

The mixed-integer optimization model is as follows:

minimize
n∑

i=1
�i

subject to �i � �yi −�′
kxi�−M�1− ak� i�� k ∈ 	K� i ∈N�

�i�−�yi−�′
kxi�−M�1−ak�i�� k∈ 	K� i∈N�

K∑
k=1

ak� i = 1� i ∈N�

ak� i ∈ �0�1	� �i � 0

(15)

From the first and second constraints, �i is the absolute
error associated with point xi. If ak� i = 1, then �i � �yi −
�′

kxi�, �i �−�yi −�′
kxi�, and the minimization of �i sets �i

equal to �yi − �′
kxi�. If ak� i = 0, the right-hand side of the

first two constraints becomes negative, making them irrele-
vant because �i is nonnegative. Finally, the third constraint
limits the assignment of each point to just one group.
We have found that even for relatively small n (n≈ 200),

problem (15) is difficult to solve in reasonable time. For
this reason, we initially run a clustering algorithm, similar
to that of §3.2, to cluster nearby xi points together. After L
such clusters are found, for L� n, we can solve a mixed-
integer optimization model, similar to problem (15), but
with significantly fewer binary decision variables.

4.2. The Clustering Algorithm

We apply a nearest-neighbor clustering algorithm in the
combined �x� y� space, as opposed to just the x space, to
find L clusters. Specifically, the clustering algorithm ini-
tially starts with n clusters, then continues to merge the
clusters with points close to each other until we are left
with L clusters. More formally, the clustering algorithm is
as follows:

1. Initialize: k = n. Ci = �i	, i = 1� 
 
 
 � n.
2. while l < L do
3. Find the points �xi� yi� and �xj � yj�, i < j , with

minimum pairwise statistical distance. Let l�i�
and l�j� be the indices of the clusters that �xi� yi�
and �xj � yj� currently belong to, respectively.

4. Add cluster l�j�’s points to cluster l�i�,
i.e., Cl�i� �=Cl�i� ∪Cl�j�.

5. Let the pairwise statistical distance between
all the points in Cl�i� be �.

6. l = l− 1.
7. end while

In the clustering algorithm for classification problems
(§3.2), we merged clusters that had centers of close proxim-
ity. However, in the present clustering algorithm, we merge
clusters that contain points of close proximity. Computa-
tional experimentations showed that this latter method of
clustering suited the regression problem better.

4.3. Assigning Points to Groups: A Practical
Approach

Although we can continue the clustering algorithm of the
previous section until we find K clusters, define them as
our final groups, and find the best �k coefficient for each
group by solving separate linear regression problems, such
an approach does not combine points to minimize the total
absolute error. For this reason, we use the clustering algo-
rithm until we have L, L > K, clusters and then solve a
mixed-integer optimization model that assigns the L clus-
ters into K groups to minimize the total absolute error.
Another key concern in regression models is the pres-
ence of outliers. The mixed-integer optimization model we
present next is able to remove potential outliers by elimi-
nating points in clusters that tend to weaken the fit of the
predictor coefficients.
Let Cl, l ∈ L̄ = �1� 
 
 
 �L	, be cluster l, and denote l�i�

as xi’s cluster. Similarly to problem (15), we define the
following binary variables for k ∈ 	K ∪ �0	 and l ∈ L̄:

ak� l =


1 if cluster l is assigned to group k�

0 otherwise.
(16)

We define k = 0 as the outlier group, in the sense that points
in cluster l with a0� l = 1 will be eliminated. The following
model assigns clusters to groups and allows the possibility
of eliminating clusters of points as outliers:

minimize
n∑

i=1
�i

subject to �i��yi−�′
kxi�−M�1−ak�l�i��� k∈ 	K�i∈N�

�i �−�yi −�′
kxi�−M�1− ak� l�i���

k ∈ 	K� i ∈N�

K∑
k=0

ak� l = 1� l ∈ L̄�

L∑
l=1

�Cl�a0� l � '�N ��

ak� l ∈ �0�1	� �i � 0�

(17)

whereM is a large positive constant, and ' is the maximum
fraction of points that can be eliminated as outliers.
From the first and second set of constraints, �i is the

absolute error associated to point xi. If ak� l�i� = 1, then �i �

�yi − �′
kxi�, �i �−�yi − �′

kxi�, and the minimization of �i
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sets it equal to �yi − �′
kxi�. If ak� l�i� = 0, the first two con-

straints become irrelevant because �i is nonnegative. The
third set of constraints limits the assignment of each clus-
ter to just one group (including the outlier group). The last
constraint limits the percentage of points eliminated to be
less than or equal to a pre-specified number '. If ak� l = 1,
then all the points in cluster l are assigned to group k, i.e.,
Gk =

⋃
�l �ak� l=1	 Cl.

Problem (17) has KL binary variables as opposed to
Kn binary variables in problem (15). The number of clus-
ters L controls the trade-off between the quality of the solu-
tion and the efficiency of the computation. As L increases,
the quality of the solution increases, but the efficiency
of the computation decreases. In §5.2, we discuss appro-
priate values for K, L, and ' from our computational
experimentation.

4.4. Assigning Groups to Polyhedral Regions

We identify K groups of points solving problem (17). In
this section, we establish a geometric representation of
group k by a polyhedron Pk.
It is possible for the convex hulls of the K groups to

overlap, and thus we might not be able to define disjoint
regions of Pk that contain all the points of group k. For this
reason, our approach is based on separating pairs of groups
with the objective of minimizing the sum of violations. We
first outline how to separate group k and group r , where
k < r . We consider the following two linear optimization
problems:

minimize
∑
i∈Gk

�i +
∑
l∈Gr

�l

subject to p′
k� rx

′
i − qk� r �−1+ �i� i ∈Gk�

p′
k� rxl − qk� r � 1− �l� l ∈Gr�

p′
k� re� 1�

�i � 0� �l � 0�

(18)

minimize
∑
i∈Gk

�i +
∑
l∈Gr

�l

subject to p′
k� rxi − qk� r �−1+ �i� i ∈Gk�

p′
k� rxl − qk� r � 1− �l� l ∈Gr�

p′
k� re�−1�

�i � 0� �l � 0�

(19)

where e is a vector of ones.
Both problems (18) and (19) find a hyperplane p′

k� rx =
qk� r that softly separates points in group k from points in
group r , i.e., points in either group can be on the wrong
side of this hyperplane if necessary. The purpose of the
third constraint is to prevent getting the trivial hyperplane
pk� r = 0 and qk� r = 0 for the optimal solution. Problem (18)
sets the sum of the elements of pk� r to be strictly positive,
and problem (19) sets the sum of the elements of pk� r to be

strictly negative. Both problems need to be solved because
we do not know a priori whether the sum of the elements
of the optimal nontrivial pk� r is positive or negative. The
optimal solution of the problem that results in the least
number of violated points is chosen as our hyperplane.
After we solve problems (18) and (19) for every pair of

groups, we let

Pk = �x � p′
k� ix� qk� i� i = 1� 
 
 
 � k− 1�

p′
k� ix� qk� i� i = k+ 1� 
 
 
 �K	
 (20)

After Pk is defined, we recompute �k using all the points
contained in Pk because it is possible that they are different
from the original Gk that problem (17) found. We solve
a linear optimization problem that minimizes the absolute
deviation of all points in Pk to find the new �k.

4.5. Nonlinear Data Transformations

To improve the predictive power of CRIO, we augment
the explanatory variables with nonlinear transformations. In
particular, we consider the transformations x2, logx, and
1/x applied to the coordinates of the given points. We can
augment each d-dimensional vector xi = �xi�1� 
 
 
 � xi�d�

′

with x2i� j , logxi� j , 1/xi� j , j = 1� 
 
 
 � d, and apply CRIO
to the resulting 4d-dimensional vectors, but the increased
dimension slows down the computation time. For this rea-
son, we use a simple heuristic method to choose which
transformation of which variable to include in the data set.
For j = 1� 
 
 
 � d, we run the one-dimensional regres-

sions: (a) �xi� j � yi�, i ∈ N , with the sum of squared errors
equal to fj�1; (b) �x2i� j � yi�, i ∈ N , with the sum of squared
errors equal to fj�2; (c) �logxi� j � yi�, i ∈N , with the sum of
squared errors equal to fj�3; and (d) �1/xi� j � yi�, i ∈N , with
the sum of squared errors equal to fj�4. If fj�2 < fj�1, we
add x2i� j and eliminate xi� j . If fj�3 < fj�1, we add logxi� j and
eliminate xi� j . If fj�4 < fj�1, we add 1/xi� j and eliminate
xi� j . Otherwise, we do not add any nonlinear transformation
to the data set.

4.6. The Overall Algorithm for Regression

The overall algorithm for regression is as follows:

1. Nonlinear transformation. Augment the original
data set with nonlinear transformations using the method
discussed in §4.5.
2. Preprocessing. Use the clustering algorithm to find

L� n clusters of the data points.
3. Assign clusters to groups. Solve problem (17) to

determine which points belong to which group, while elim-
inating potential outliers.
4. Assign groups to polyhedral regions. Solve the lin-

ear optimization problems (18) and (19) for all pairs of
groups, and define polyhedra as in Equation (20).
5. Re-computation of �s. Once the polyhedra Pk are

identified, recompute �k using only the points that belong
in Pk.
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Given a new point x0 (augmented by the same trans-
formations as applied in the training set data), if x0 ∈ Pk,
then we predict �y0 = �′

kx0. Otherwise, we assign x0 to the
region Pr that contains the majority among its F nearest
neighbors in the training set, and make the prediction �y0 =
�′

rx0.

5. Computational Results
In this section, we report on the performance of CRIO
on several generated and widely circulated real data sets.
In §5.1, we present CRIO’s performance on classification
data sets and compare it to the performances of logis-
tic regression, neural networks, classification trees, tree-
boosting methods, and SVM. In §5.2, we present CRIO’s
performance on regression data sets and compare it to the
performances of least-square regression, neural networks,
tree-boosting methods, and MARS.

5.1. Classification Results

We tested the classification component of CRIO on two
sets of generated data and five real data sets, and we
compared its performance against logistic regression (via
MATLAB’s® “Logist” procedure), neural network classi-
fier (via MATLAB’s® neural network toolbox), SVM (via
SVMfu4) (Rifkin 2002), and classification trees with uni-
variate and multivariate partition rules (via CRUISE5—a
classification tree software with both univariate and mul-
tivariate partitioning (Kim and Loh 2000, Loh and Shih
1997, Kim and Loh 2001)). We also tested two tree-
boosting methods: the generalized boosted method (GBM)
implemented in R (Ridgeway 2005), and TreeNet™ by
Salford Systems, which is an implementation of multiple
additive regression trees (Friedman 2002). Although both
methods are based on Friedman (1999a, b), we present
them both because they exhibited varying behaviors on dif-
ferent data sets.
Each data set was split into three parts: the training set,

the validation set, and the testing set. The training set, com-
prising 50% of the data, was used to develop the model.
The validation set, comprising 30% of the data, was used to
select the best values of the model parameters. Finally, the
remaining points were part of the testing set, which ulti-
mately decided the prediction accuracy and generalizability
of the model. This latter set was put aside until the very
end, after the parameters of the model were finalized. The
assignment to each of the three sets was done randomly,
and this process was repeated 10 times for each data set.
In CRIO, we used the validation set to decide on the

appropriate value for K and which class to assign to groups.
In all cases, we used the the mixed-integer programming
model (10), set the parameters M , K0, and K1 to 1,000, 10,
and 10, respectively, and deleted clusters with cardinality
less than 1% of the total number of points as outliers. In
logistic regression, we used the validation set for deciding
the cut-off level. In neural networks, we used the validation

set to fine-tune several parameters, including the number
of epochs, activation function, and number of nodes in the
hidden layer. In classification trees, the validation set was
used to set parameters for CRUISE, such as the variable
selection method, split selection method, and the ! value.
For SVM, linear, polynomial (with degree 2 and 3), and
Gaussian kernels were all tested, as well as different cost
per unit violation of the margin. The kernel and parame-
ters resulting in the best validation accuracy were chosen
to classify the testing set. For GBM, we tested shrinkage
values between 0
001 and 0
01, and 3,000 to 10,000 tree
iterations, as suggested by Ridgeway (2005). We use the
Bernoulli distribution for the loss criterion distribution. In
almost all cases, shrinkage of 0
01 and 3,000 iterations gave
the best cross-validation accuracy. Similarly, for TreeNet™,
we tested shrinkage values between 0
001 to 0
01, 3,000 to
5,000 tree iterations, and the logistic loss criterion. In all
cases, shrinkage of 0.01 and 5,000 iterations gave the best
cross-validation performance.
We solved all optimization problems (mixed-integer,

quadratic, and linear) using CPLEX 8.06 (ILOG 2001) run-
ning on a Linux desktop.

Classification Data. We generated two sets of data
sets for experimentation. First, we randomly generated data
from mixtures of Gaussian distributions. For each class,
0 and 1, we generated covariance matrices and the mean
vectors for two Gaussian distributions, and we randomly
generated data points from the distributions. Second, we
generated a data set partitioned into polyhedral regions con-
structed by a decision tree with multivariate division rules.
The tree was generated by randomly generating a hyper-
plane to partition the input space, then for each partition,
a new subtree or leaf was generated recursively. The leaf
nodes were uniformly assigned to Classes 0 or 1. For every
generated data set, we mislabeled the class of 5% of the
points, making them act as outliers. The Gaussian data sets
were generated to favor SVMs with Gaussian kernels, and
the polyhedral data sets were generated to favor CRIO and
classification trees with multivariate splits.
In addition to the generated data sets, we tested our mod-

els on four real data sets found on the UCI data repos-
itory (http://www.ics.uci.edu/∼mlearn/MLSummary.html).
The “Cancer” data are from the Wisconsin Breast Cancer
database, with 682 data points and nine explanatory vari-
ables. The “Liver” data are from BUPA Medical Research
Ltd., with 345 data points and six explanatory variables.
The “Diabetes” data are from the Pima Indian Diabetes
database, with 768 data points and seven explanatory vari-
ables. The “Heart” data are from the SPECT heart database,
where we combined the given training and testing set to
get 349 data points and 44 explanatory variables. All data
sets involve binary classification.

Results. For logistic regression, neural networks,
univariate and multivariate classification trees, GBM,
TreeNet™, SVM, and CRIO, Tables 1 and 2 summa-
rize their classification accuracy on the Gaussian data set,
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Table 1. Classification accuracy of logistic regression, neural networks, and univariate and multivariate classification
trees on generated Gaussian data with n data points in �d.

Logistic regression Neural networks
Gaussian
data n d Train Validation Test Train Validation Test

G1 500 2 0.976 (0.010) 0.976 (0.012) 0.972 (0.017) 0.999 (0.003) 0.993 (0.004) 0.995 (0.007)
G2 500 10 0.606 (0.021) 0.595 (0.025) 0.592 (0.034) 1.000 (0.000) 0.995 (0.008) 0.996 (0.005)
G3 1�000 2 0.726 (0.017) 0.738 (0.022) 0.742 (0.028) 0.918 (0.011) 0.914 (0.016) 0.912 (0.018)
G4 1�000 10 0.608 (0.016) 0.591 (0.022) 0.595 (0.029) 1.000 (0.000) 0.996 (0.005) 0.992 (0.009)
G5 1�000 20 0.603 (0.012) 0.598 (0.018) 0.595 (0.027) 0.999 (0.001) 0.974 (0.010) 0.970 (0.009)
G6 2�000 2 0.716 (0.013) 0.729 (0.018) 0.721 (0.014) 0.928 (0.007) 0.929 (0.010) 0.934 (0.015)
G7 2�000 10 0.934 (0.154) 0.933 (0.148) 0.930 (0.154) 0.997 (0.007) 0.991 (0.005) 0.989 (0.009)
G8 2�000 20 0.949 (0.005) 0.943 (0.010) 0.938 (0.011) 0.992 (0.004) 0.955 (0.014) 0.949 (0.015)
G9 4�000 2 0.904 (0.005) 0.912 (0.008) 0.899 (0.008) 0.981 (0.002) 0.982 (0.003) 0.980 (0.005)
G10 4�000 10 0.502 (0.005) 0.499 (0.009) 0.499 (0.013) 1.000 (0.001) 0.999 (0.001) 0.998 (0.001)
G11 4�000 20 0.740 (0.257) 0.743 (0.253) 0.744 (0.251) 0.996 (0.003) 0.984 (0.003) 0.982 (0.006)

Univariate classification trees Multivariate classification trees

G1 500 2 0.964 (0.018) 0.939 (0.025) 0.930 (0.054) 0.978 (0.007) 0.970 (0.020) 0.970 (0.012)
G2 500 10 0.988 (0.008) 0.967 (0.009) 0.974 (0.014) 0.997 (0.002) 0.997 (0.006) 0.998 (0.004)
G3 1�000 2 0.914 (0.011) 0.888 (0.018) 0.892 (0.022) 0.868 (0.017) 0.854 (0.021) 0.857 (0.022)
G4 1�000 10 0.964 (0.006) 0.947 (0.013) 0.947 (0.012) 0.998 (0.003) 0.989 (0.008) 0.989 (0.010)
G5 1�000 20 0.915 (0.027) 0.865 (0.028) 0.860 (0.033) 0.986 (0.009) 0.968 (0.009) 0.975 (0.014)
G6 2�000 2 0.934 (0.016) 0.907 (0.028) 0.920 (0.018) 0.931 (0.012) 0.931 (0.013) 0.935 (0.013)
G7 2�000 10 0.960 (0.009) 0.947 (0.011) 0.943 (0.010) 0.991 (0.004) 0.983 (0.006) 0.987 (0.006)
G8 2�000 20 0.899 (0.012) 0.854 (0.012) 0.848 (0.022) 0.955 (0.010) 0.942 (0.011) 0.945 (0.014)
G9 4�000 2 0.979 (0.003) 0.973 (0.009) 0.971 (0.005) 0.957 (0.008) 0.959 (0.012) 0.955 (0.010)
G10 4�000 10 0.985 (0.002) 0.976 (0.005) 0.974 (0.006) 0.997 (0.002) 0.996 (0.003) 0.994 (0.003)
G11 4�000 20 0.951 (0.009) 0.918 (0.009) 0.922 (0.012) 0.983 (0.003) 0.981 (0.005) 0.981 (0.005)

Note. Standard deviations are in parentheses.

Table 2. Classification accuracy of generalized boosted methods (GBM), TreeNet™, logistic regression, neural networks,
univariate and multivariate classification trees, and SVM and CRIO on generated Gaussian data with n data
points in �d.

GBM TreeNet™
Gaussian
data n d Train Validation Test Train Validation Test

G1 500 2 1
000 (0) 0
984 (0.01) 0
987 (0.011) 0
990 (0.005) 0
985 (0.005) 0
982 (0.020)
G2 500 10 1
000 (0) 0
986 (0.01) 0
991 (0.007) 0
984 (0.015) 0
977 (0.011) 0
974 (0.014)
G3 1�000 2 0
930 (0.007) 0
910 (0.018) 0
911 (0.018) 0
923 (0.017) 0
912 (0.015) 0
899 (0.027)
G4 1�000 10 1
000 (0) 0
990 (0.004) 0
984 (0.007) 0
994 (0.003) 0
984 (0.009) 0
977 (0.008)
G5 1�000 20 1
000 (0.001) 0
967 (0.009) 0
97 (0.012) 0
998 (0.002) 0
963 (0.010) 0
962 (0.015)
G6 2�000 2 0
879 (0.013) 0
865 (0.016) 0
868 (0.014) 0
929 (0.008) 0
919 (0.018) 0
924 (0.012)
G7 2�000 10 0
996 (0.002) 0
979 (0.004) 0
982 (0.004) 0
992 (0.002) 0
978 (0.004) 0
976 (0.007)
G8 2�000 20 0
974 (0.004) 0
932 (0.007) 0
934 (0.01) 0
978 (0.003) 0
948 (0.007) 0
944 (0.013)
G9 4�000 2 0
977 (0.002) 0
975 (0.004) 0
972 (0.004) 0
979 (0.003) 0
978 (0.003) 0
973 (0.005)
G10 4�000 10 1
000 (0) 0
997 (0.002) 0
996 (0.002) 0
994 (0.003) 0
992 (0.004) 0
989 (0.007)
G11 4�000 20 0
99 (0.001) 0
975 (0.004) 0
976 (0.005) 0
987 (0.002) 0
973 (0.003) 0
972 (0.006)

SVM CRIO

G1 500 2 0
996 (0.004) 0
993 (0.003) 0
993 (0.008) 0
998 (0.003) 0
991 (0.008) 0
994 (0.005)
G2 500 10 0
998 (0.002) 0
999 (0.002) 0
998 (0.004) 1
000 (0) 1
000 (0) 1
000 (0)
G3 1�000 2 0
924 (0.010) 0
918 (0.012) 0
915 (0.018) 0
918 (0.011) 0
910 (0.014) 0
921 (0.019)
G4 1�000 10 0
998 (0.003) 0
996 (0.003) 0
991 (0.007) 1
000 (0.001) 0
997 (0.003) 0
997 (0.005)
G5 1�000 20 0
999 (0.001) 0
986 (0.006) 0
990 (0.007) 1
000 (0) 0
981 (0.006) 0
985 (0.011)
G6 2�000 2 0
955 (0.008) 0
953 (0.008) 0
952 (0.009) 0
946 (0.005) 0
948 (0.010) 0
952 (0.011)
G7 2�000 10 0
992 (0.002) 0
986 (0.003) 0
987 (0.005) 0
999 (0.002) 0
992 (0.003) 0
993 (0.004)
G8 2�000 20 0
995 (0.001) 0
975 (0.007) 0
971 (0.010) 1
000 (0) 0
962 (0.006) 0
964 (0.005)
G9 4�000 2 0
982 (0.002) 0
983 (0.004) 0
980 (0.004) 0
982 (0.002) 0
983 (0.004) 0
981 (0.004)
G10 4�000 10 0
999 (0.001) 0
999 (0.001) 0
972 (0.084) 1
000 (0) 1
000 (0) 1
000 (0)
G11 4�000 20 0
998 (0.001) 0
989 (0.003) 0
990 (0.002) 0
993 (0.003) 0
987 (0.002) 0
984 (0.003)

Note. Standard deviations are in parentheses.
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Table 3. Average CPU time for logistic regression (LR), neural networks (NN), univariate
classification trees (CTreeU), multivariate classification trees (CTreeM), generalized
boosted methods (GBM), TreeNet™, SVM, and CRIO for the Gaussian data sets.

Data LR NN CTreeU CTreeM GBM TreeNet™ SVM CRIO

G1 0.004 0.424 0.067 0.023 1
065 +6
117�37
71, 0
014 0
048
G2 0.012 0.375 0.090 0.029 1
767 +10
37�39
75, 0
010 0
085
G3 0.003 0.667 0.325 0.120 1
931 +8
040�38
25, 0
060 0
443
G4 0.018 0.522 0.317 0.102 3
711 +11
58�36
22, 0
047 0
620
G5 0.025 0.601 0.543 0.324 5
489 +18
57�40
29, 0
075 1
223
G6 0.006 1.485 1.097 0.288 4
166 +12
04�37
79, 0
492 1
977
G7 0.021 0.965 1.254 0.292 7
509 +22
79�41
30, 0
111 3
477
G8 0.034 0.867 1.697 0.973 11
60 +34
81�43
38, 3
898 11
77
G9 0.019 2.268 2.684 0.388 8
872 +19
37�36
72, 0
736 1
442
G10 0.073 1.958 4.180 0.379 15
31 +35
90�37
72, 0
139 11
52
G11 0.109 1.877 5.056 1.614 23
44 +71
08�71
08, 41
13 36
04

Tables 4 and 5 summarize their accuracy on the polyhedral
data set, and Table 7 summarizes their accuracy on the real
data sets. The columns labeled “Train,” “Validation,” and
“Test” illustrate the fraction of the training, validation, and
testing set, respectively, that the models correctly classi-
fied. Each entry is the average of 10 independent runs. The
numbers in the parentheses are the corresponding standard
deviation.
Tables 3, 6, and 8 summarize the average computation

time (in CPU seconds) of the algorithms on the respective
data sets. We were not able to get the exact total running

Table 4. Classification accuracy of logistic regression, neural networks, and univariate and multivariate classification
trees on generated polyhedral data with n data points in �d.

Logistic regression Neural networks
Polyhedral
data n d Train Validation Test Train Validation Test

P1 500 2 0
728 (0.020) 0
752 (0.033) 0
727 (0.036) 0
823 (0.111) 0
821 (0.083) 0
806 (0.110)
P2 500 10 0
571 (0.030) 0
597 (0.033) 0
563 (0.051) 0
538 (0.033) 0
575 (0.048) 0
547 (0.078)
P3 1�000 2 0
625 (0.067) 0
612 (0.058) 0
620 (0.071) 0
783 (0.180) 0
772 (0.170) 0
777 (0.170)
P4 1�000 10 0
903 (0.011) 0
897 (0.010) 0
892 (0.018) 0
759 (0.020) 0
765 (0.019) 0
751 (0.033)
P5 1�000 20 0
945 (0.015) 0
934 (0.013) 0
927 (0.021) 0
541 (0.049) 0
548 (0.034) 0
541 (0.048)
P6 2�000 2 0
867 (0.006) 0
865 (0.013) 0
852 (0.016) 0
945 (0.017) 0
943 (0.017) 0
938 (0.014)
P7 2�000 10 0
899 (0.009) 0
895 (0.009) 0
899 (0.013) 0
709 (0.158) 0
701 (0.155) 0
698 (0.155)
P8 2�000 20 0
880 (0.008) 0
875 (0.011) 0
880 (0.022) 0
538 (0.103) 0
549 (0.090) 0
544 (0.104)
P9 4�000 2 0
900 (0.010) 0
905 (0.009) 0
894 (0.014) 0
949 (0.033) 0
949 (0.036) 0
952 (0.034)
P10 4�000 10 0
813 (0.006) 0
809 (0.008) 0
805 (0.015) 0
703 (0.034) 0
692 (0.036) 0
690 (0.024)
P11 4�000 20 0
855 (0.007) 0
855 (0.007) 0
847 (0.013) 0
702 (0.044) 0
703 (0.047) 0
704 (0.052)

Univariate classification trees Multivariate classification trees

P1 500 2 0
906 (0.025) 0
848 (0.055) 0
837 (0.046) 0
884 (0.025) 0
881 (0.026) 0
880 (0.025)
P2 500 10 0
592 (0.062) 0
582 (0.035) 0
581 (0.050) 0
566 (0.036) 0
581 (0.036) 0
579 (0.052)
P3 1�000 2 0
898 (0.034) 0
847 (0.040) 0
835 (0.047) 0
942 (0.026) 0
940 (0.039) 0
931 (0.023)
P4 1�000 10 0
876 (0.014) 0
842 (0.022) 0
828 (0.030) 0
905 (0.011) 0
886 (0.017) 0
892 (0.018)
P5 1�000 20 0
771 (0.026) 0
718 (0.028) 0
697 (0.038) 0
931 (0.008) 0
916 (0.017) 0
915 (0.018)
P6 2�000 2 0
975 (0.005) 0
965 (0.006) 0
963 (0.012) 0
949 (0.006) 0
943 (0.006) 0
944 (0.010)
P7 2�000 10 0
824 (0.030) 0
751 (0.029) 0
754 (0.020) 0
909 (0.012) 0
894 (0.011) 0
899 (0.011)
P8 2�000 20 0
758 (0.044) 0
675 (0.038) 0
693 (0.026) 0
911 (0.018) 0
886 (0.009) 0
890 (0.026)
P9 4�000 2 0
969 (0.004) 0
958 (0.005) 0
957 (0.006) 0
950 (0.008) 0
945 (0.011) 0
947 (0.009)
P10 4�000 10 0
826 (0.014) 0
779 (0.012) 0
776 (0.016) 0
884 (0.011) 0
849 (0.013) 0
848 (0.017)
P11 4�000 20 0
801 (0.013) 0
762 (0.011) 0
755 (0.018) 0
869 (0.015) 0
856 (0.007) 0
859 (0.017)

Note. Standard deviations are in parentheses.

time from TreeNet™, but were able to calculate the lower
and upperbound of the total CPU seconds.7

We compared the performance of the various classifica-
tion algorithms in terms of its predictive ability and the sta-
bility of its solutions. We use the classification accuracy of
the methods on the testing set as the measure of predictive
accuracy, and we use the standard deviation as a measure
of stability of the prediction over different partitions of the
data set.
For the Gaussian data sets, CRIO, SVM, and neural net-

works did consistently well, and multivariate classification
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Table 5. Classification accuracy of logistic regression, neural networks, univariate and multivariate classification trees,
SVM, and CRIO on generated polyhedral data with n data points in �d.

GBM TreeNet™
Polyhedral
data n d Train Validation Test Train Validation Test

P1 500 2 0
825 (0.016) 0
778 (0.032) 0
755 (0.033) 0
950 (0.017) 0
932 (0.014) 0
919 (0.035)
P2 500 10 0
623 (0.064) 0
585 (0.041) 0
544 (0.053) 0
758 (0.061) 0
567 (0.033) 0
508 (0.051)
P3 1�000 2 0
666 (0.022) 0
621 (0.023) 0
630 (0.021) 0
963 (0.007) 0
938 (0.018) 0
921 (0.017)
P4 1�000 10 0
946 (0.008) 0
880 (0.011) 0
872 (0.022) 0
948 (0.012) 0
891 (0.011) 0
877 (0.023)
P5 1�000 20 0
972 (0.006) 0
887 (0.014) 0
881 (0.015) 0
972 (0.007) 0
855 (0.019) 0
859 (0.022)
P6 2�000 2 0
977 (0.003) 0
967 (0.005) 0
966 (0.007) 0
979 (0.004) 0
974 (0.006) 0
971 (0.006)
P7 2�000 10 0
930 (0.008) 0
881 (0.014) 0
880 (0.014) 0
937 (0.015) 0
866 (0.026) 0
867 (0.021)
P8 2�000 20 0
920 (0.009) 0
850 (0.016) 0
864 (0.014) 0
937 (0.011) 0
840 (0.015) 0
852 (0.021)
P9 4�000 2 0
975 (0.004) 0
965 (0.007) 0
964 (0.008) 0
979 (0.003) 0
972 (0.004) 0
970 (0.009)
P10 4�000 10 0
842 (0.004) 0
809 (0.011) 0
808 (0.011) 0
851 (0.006) 0
805 (0.009) 0
812 (0.008)
P11 4�000 20 0
876 (0.008) 0
843 (0.003) 0
838 (0.01) 0
870 (0.013) 0
818 (0.014) 0
806 (0.012)

SVM CRIO

P1 500 2 0
965 (0.018) 0
956 (0.014) 0
953 (0.016) 0
962 (0.017) 0
948 (0.017) 0
953 (0.014)
P2 500 10 1
000 (0.000) 0
595 (0.040) 0
567 (0.057) 0
841 (0.113) 0
605 (0.017) 0
563 (0.023)
P3 1�000 2 0
980 (0.006) 0
970 (0.012) 0
963 (0.014) 0
987 (0.003) 0
984 (0.006) 0
981 (0.010)
P4 1�000 10 0
906 (0.008) 0
889 (0.0.010) 0
892 (0.017) 0
990 (0.009) 0
917 (0.009) 0
922 (0.018)
P5 1�000 20 0
940 (0.025) 0
927 (0.0.018) 0
930 (0.016) 0
963 (0.007) 0
936 (0.018) 0
938 (0.013)
P6 2�000 2 0
869 (0.007) 0
854 (0.016) 0
854 (0.014) 0
975 (0.007) 0
968 (0.011) 0
968 (0.009)
P7 2�000 10 0
894 (0.012) 0
883 (0.011) 0
887 (0.019) 0
945 (0.015) 0
909 (0.011) 0
910 (0.016)
P8 2�000 20 0
886 (0.019) 0
874 (0.019) 0
883 (0.018) 0
906 (0.015) 0
877 (0.013) 0
885 (0.018)
P9 4�000 2 0
905 (0.006) 0
905 (0.010) 0
901 (0.014) 0
983 (0.002) 0
985 (0.004) 0
984 (0.005)
P10 4�000 10 0
811 (0.008) 0
802 (0.011) 0
804 (0.008) 0
924 (0.007) 0
894 (0.008) 0
881 (0.012)
P11 4�000 20 0
791 (0.070) 0
789 (0.071) 0
787 (0.064) 0
927 (0.008) 0
885 (0.006) 0
880 (0.014)

Note. Standard deviations are in parentheses.

trees and tree-boosting methods did well in a majority of the
cases. In terms of prediction accuracy, CRIO outperformed
SVM in seven out of the 11 cases, outperformed neural
networks in 10 out of the 11 cases, and outperformed mul-
tivariate classification trees and both tree-boosting methods
in all 11 cases. The high prediction accuracies and low
standard deviation of the results show that CRIO’s results
are consistently accurate and stable across the 10 partitions.
It is interesting to note that CRIO has comparably low stan-
dard deviations as SVMs because the latter has several the-
oretical stability and generalizability results (Bousquet and

Table 6. Average CPU time for logistic regression (LR), neural networks (NN), univariate
classification trees (CTreeU), multivariate classification trees (CTreeM), generalized
boosted methods (GBM), SVM, and CRIO for the polyhedral data sets.

Data LR NN CTreeU CTreeM GBM TreeNet™ SVM CRIO

P1 0.003 0.537 0.077 0.035 0
508 +6
279�37
52, 0.015 0
248
P2 0.001 0.333 0.201 0.175 0
232 +8
277�38
81, 0.026 0
147
P3 0.001 0.679 0.265 0.074 0
570 +6
989�34
08, 0.084 0
152
P4 0.009 0.395 0.312 0.125 2
449 +11
99�41
16, 946.2 1
435
P5 0.017 0.376 0.581 0.298 5
362 +21
94�46
96, 1,757 0
372
P6 0.006 1.374 0.528 0.160 4
276 +10
74�38
59, 183.7 2
574
P7 0.015 0.486 1.052 0.500 6
990 +22
32�45
43, 2,721 3
745
P8 0.030 0.595 1.554 1.370 10
14 +35
40�50
37, 2,314 5
868
P9 0.018 2.561 0.524 0.496 8
092 +22
36�45
53, 827.5 1
985
P10 0.032 0.738 2.538 1.729 11
12 +41
53�53
74, 2,689 16
36
P11 0.066 0.911 3.655 3.069 20
09 +63
08�68
94, 3,578 30
29

Elisseeff 2002, Rifkin 2002). As expected, SVM used the
Gaussian kernel for all cases. CRIO used K = 2 for data
set G6 and G8, and K = 1 for the rest.
CRIO, SVM, and the multivariate classification tree per-

formed consistently well in the polyhedral data set. CRIO
outperformed SVM in nine out of the 11 cases and outper-
formed CRUISE in 10 out of the 11 cases. The multivariate
classification tree does not do as well as expected, given
that the data set was partitioned into polyhedral regions.
It is clear in this case that CRIO’s major advantage over
classification trees is the global optimization of its polyhe-
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Table 7. Classification accuracy of logistic regression, neural networks, univariate and multivariate classification trees,
SVM, and CRIO on data sets Cancer, Liver, Diabetes, and Heart, each with n data points in �d.

Real data Logistic regression Neural networks

Data set n d Train Validation Test Train Validation Test

Cancer 683 9 0.970 (0.008) 0.976 (0.011) 0.964 (0.009) 0.975 (0.007) 0.970 (0.012) 0.974 (0.011)
Liver 345 6 0.702 (0.031) 0.702 (0.045) 0.676 (0.040) 0.699 (0.090) 0.689 (0.037) 0.639 (0.098)
Diabetes 768 8 0.774 (0.023) 0.770 (0.034) 0.775 (0.033) 0.704 (0.087) 0.686 (0.087) 0.699 (0.089)
Heart 349 44 0.283 (0.024) 0.252 (0.031) 0.276 (0.050) 0.713 (0.030) 0.743 (0.030) 0.727 (0.053)

Univariate classification trees Multivariate classification trees

Cancer 683 9 0.957 (0.011) 0.941 (0.024) 0.942 (0.013) 0.969 (0.009) 0.960 (0.008) 0.962 (0.017)
Liver 345 6 0.653 (0.075) 0.584 (0.043) 0.616 (0.043) 0.697 (0.048) 0.658 (0.044) 0.644 (0.045)
Diabetes 768 8 0.779 (0.026) 0.728 (0.026) 0.736 (0.037) 0.781 (0.019) 0.760 (0.035) 0.766 (0.025)
Heart 349 44 0.828 (0.061) 0.769 (0.027) 0.783 (0.073) 0.874 (0.095) 0.764 (0.033) 0.754 (0.063)

GBM TreeNet™

Cancer 683 9 0.978 (0.005) 0.964 (0.012) 0.968 (0.016) 0.977 (0.005) 0.972 (0.012) 0.968 (0.013)
Liver 345 6 0.844 (0.019) 0.724 (0.030) 0.720 (0.048) 0.818 (0.057) 0.723 (0.039) 0.710 (0.043)
Diabetes 768 8 0.811 (0.013) 0.752 (0.020) 0.773 (0.021) 0.818 (0.027) 0.760 (0.032) 0.758 (0.027)
Heart 349 44 0.969 (0.022) 0.849 (0.034) 0.840 (0.050) 0.919 (0.036) 0.853 (0.034) 0.844 (0.044)

SVM CRIO

Cancer 683 9 0.970 (0.006) 0.969 (0.010) 0.968 (0.013) 0.977 (0.006) 0.973 (0.007) 0.977 (0.009)
Liver 345 6 0.788 (0.046) 0.704 (0.035) 0.697 (0.045) 0.783 (0.042) 0.741 (0.026) 0.717 (0.046)
Diabetes 768 8 0.789 (0.028) 0.749 (0.021) 0.764 (0.046) 0.805 (0.032) 0.777 (0.028) 0.777 (0.032)
Heart 349 44 1.000 (0.000) 0.867 (0.032) 0.848 (0.061) 0.998 (0.004) 0.866 (0.016) 0.851 (0.056)

Note. Standard deviations are in parentheses.

dral partition. Again, the low standard deviation of CRIO’s
prediction results implies the consistency of the prediction
results. SVM used Gaussian kernels for P1, P2, and P3,
and linear kernels for the rest. CRIO used K = 2 for P6
and K = 1 for the rest.
CRIO outperformed all methods, in terms of prediction

accuracy, for all four of the real data sets. CRIO’s results,
again, correspond to low standard deviations. SVM used
Gaussian kernels for all data sets, and CRIO used K = 2
for the “Diabetes” data set and K = 1 for all other data
sets.
For cases where CRIO used K = 1, 80% to 99% of the

total CPU time was spent on finding a polyhedron for each
Class 1 group (§3.4), i.e., solving the convex quadratic
programming problem (11) for each Class 1 group and
Class 0 cluster. Note that for K = 1, the mixed-integer
programming problem (10) is essentially a linear program-

Table 8. Average CPU time for logistic regression (LR), neural networks (NN), univariate
classification trees (CTreeU), multivariate classification trees (CTreeM), generalized
boosted methods (GBM), TreeNet™, SVM, and CRIO for data sets Cancer, Liver,
Diabetes, and Heart.

Data LR NN CTreeU CTreeM GBM TreeNet™ SVM CRIO

Cancer 0.007 0.357 0.092 0.066 0.546 +2
725�32
39, 0.013 0.290
Liver 0.003 0.443 0.070 0.054 0.606 +3
618�37
73, 0.031 0.065
Diabetes 0.004 0.387 0.216 0.185 0.608 +3
782�35
72, 0.071 0.250
Heart 0.023 0.301 0.233 0.835 1.642 +5
071�36
34, 0.021 0.330

ming problem. Thus, the significant portion of the total
computation time is spent on solving the sets of quadratic
programming problems, not the mixed-integer program-
ming problem. We used CPLEX 8.0 to solve each of the
separating hyperplane problems (11), without taking advan-
tage of the special structures of this quadratic program-
ming problem, as done by all SVM algorithms, including
SVMfu. We believe that using tailored quadratic solvers
for the separating hyperplane problem would significantly
speed up the computation time in these cases. In cases
when K = 2, about 10% to 15% of the time was used to
solve the quadratic program. The remainder of the time
was used to solve the mixed-integer programming problem.
Again, given the particular properties of the mixed-integer
programming problem, a more tailored solution method
might speed up the computation time.
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5.2. Regression Results

We tested the regression component of CRIO on three real
data sets found on the UCI data repository and Friedman’s
(1999b) generated data set. We compared the results to
linear regression, neural networks with radial basis func-
tions and generalized regression (via MATLAB’s® neu-
ral networks toolbox), tree-boosting methods GBM and
Treenet™ described in §5.1, and MARS (via R’s “poly-
mars” package).
Similar to the experiments on the classification data sets

in §5.1, each of the regression data was split into three parts,
with 50%, 30%, and 20% of the data used for training, vali-
dating, and testing, respectively. The assignment to each set
was done randomly, and the process was repeated 10 times.
We used the validation set for CRIO to fine-tune the

value of parameter K. In all cases, we solved the mixed-
integer programming problem (17) and set the parameters
M , L, and ' to 10,000, 10, and 0.01, respectively. In neural
networks, we use the validation set to select the appropriate
model (radial basis function versus generalized regression),
adjust the number of epochs, the number of layers, the
spread constant, and the accuracy parameter. For GBM and
TreeNet™, we used the validation set to select the best
shrinkage value and maximum number of tree iterations.
In MARS, we used the validation set to choose the appro-
priate maximum number of basis functions and generalized
cross validation (gcv) value.

Regression Data. The “Boston” data, with 13 explana-
tory variables and 506 observations, are the Boston housing
data set with the dependent variable being the median value
of houses in the suburbs of Boston. The “Abalone” data,
with seven explanatory variables and 4,177 observations,
attempt to predict the age of an abalone given its physiolog-
ical measurements. The original “Abalone” data set had an
additional categorical input variable, but we omitted it for
our experimentations because not all methods were capa-
ble of treating such attributes. The “Auto” data, with five
explanatory variables and 392 observations, are the auto-
mpg data set that determines the miles-per-gallon fuel con-
sumption of an automobile, given the mechanical attributes
of the car. The “Friedman” data set is a generated data set
resulting from using a random function generating method
proposed by Friedman (1999b). All nine of the generated
data sets consist of 10 explanatory variables.

Results. Tables 9 and 10 illustrate the mean-absolute
error and mean-squared error, respectively, of linear least
squares regression (LLS), neural networks (NN), GBM,
TreeNet™, MARS, and CRIO, averaged over the 10 random
partitions on the Friedman generated data sets. Tables 12
and 13 illustrate the mean-absolute error and mean-squared
error, respectively, of the regression methods, averaged over
the 10 random partitions on the “Boston,” “Abalone,” and
“Auto” data sets. The numbers in parentheses are the cor-
responding standard deviations. Tables 11 and 14 illustrate
the average running time, in terms of CPU seconds, of the

methods for the Friedman generated data sets and the real
data sets, respectively. Again, for TreeNet™, the lower and
upper bounds of the total CPU seconds are shown because
it does not currently report the exact total running time.
As in the classification case, we measure the perfor-

mance of the various regression methods by their predic-
tive ability and stability of their solutions. We measure
the prediction accuracy using both mean-absolute errors
and mean-squared errors between the predicted versus the
actual response variable in the testing set, given that the
mean-absolute error is used as the goodness-of-fit criterion
for CRIO and mean-squared error is used as the goodness-
of-fit criterion for linear least squares and the neural net-
work model. GBM, TreeNet™, and MARS can be adjusted
to deal with either loss criterion.
CRIO used K = 2 for all data sets, neural networks

always used radial basis functions as the preferred model
with just one layer of nodes, GBM used shrinkage value of
0
01 and 3,000 tree iterations, and TreeNet™ used shrink-
age of 0
01 and 4,000 tree iterations.
Table 14 shows that CRIO has relatively reasonable aver-

age running time as the other methods for the smaller data
sets, but its run time explodes for the larger “Abalone”
data set. Unlike the classification component of CRIO, the
regression component experiences a dramatic increase in
run time with larger data sets mainly due to the M param-
eter in models (15) and (17). Because a tight estimate of
this “big-M” parameter cannot be determined a priori, the
large value of M seriously hampers the efficiency of the
integer programming solver.
Clearly, the performance of the regression component

of CRIO is not as convincing as the classification com-
ponent, and more testing and modifications are needed.
Namely, we would need to make improvements to the
model (e.g., enforce continuity in the boundaries and find
stronger approximations of the parameter M) and run more
computational experiments before making any conclusions.

5.3. Discussion on Shortcomings

The computational experiments illustrated some benefits
and shortcomings of CRIO compared to other existing
methods in data mining and machine learning. The main
advantage, at least in classification, is its prediction accu-
racy and relative stability. However, there are many short-
comings that need to be addressed.
As mentioned in the previous section, the regression

component of CRIO clearly needs further development in
its mathematical model and computational experimenta-
tions. Its main weakness arises from the discontinuity of the
regression line at the boundaries of the polyhedral regions.
This is not the case of MARS, which maintains continu-
ity of its regression function throughout the domain. Thus,
CRIO’s predictive performance of general continuous func-
tions are significantly hampered by this shortcoming, as
seen with the Friedman data set. Continuity can be imposed
by modifications to the mixed-integer programming prob-
lem in the one-dimensional case, but the extension to higher
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Table 9. Mean absolute error of models linear least square regression (LLS), neural networks (NN), GBM, TreeNet™,
MARS, and CRIO on Friedman generated data sets.

Linear least squares Neural networks
Friedman
data n Train Validation Test Train Validation Test

F1 500 0
890 (0.040) 0
954 (0.045) 0
913 (0.066) 0
875 (0.045) 0
918 (0.054) 0
887 (0.061)
F2 500 0
939 (0.021) 0
963 (0.053) 1
034 (0.068) 0
923 (0.044) 0
942 (0.052) 1
011 (0.057)
F3 500 0
905 (0.025) 0
960 (0.056) 0
949 (0.076) 0
895 (0.032) 0
940 (0.046) 0
929 (0.086)
F4 1�000 0
944 (0.022) 0
941 (0.047) 0
966 (0.048) 0
938 (0.023) 0
931 (0.046) 0
957 (0.048)
F5 1�000 0
903 (0.017) 0
914 (0.024) 0
931 (0.038) 0
805 (0.020) 0
898 (0.020) 0
913 (0.034)
F6 1�000 0
931 (0.016) 0
939 (0.024) 0
940 (0.032) 0
936 (0.016) 0
936 (0.028) 0
935 (0.038)
F7 4�000 0
951 (0.012) 0
965 (0.020) 0
964 (0.028) 0
948 (0.012) 0
959 (0.020) 0
960 (0.028)
F8 4�000 0
944 (0.007) 0
964 (0.019) 0
958 (0.033) 0
940 (0.007) 0
959 (0.019) 0
953 (0.029)
F9 4�000 0
953 (0.012) 0
950 (0.016) 0
947 (0.027) 0
951 (0.012) 0
949 (0.017) 0
944 (0.027)

GBM TreeNet™

F1 500 0
897 (0.044) 0
919 (0.055) 0
889 (0.061) 0
885 (0.047) 0
922 (0.054) 0
892 (0.059)
F2 500 0
924 (0.033) 0
942 (0.055) 1
017 (0.065) 0
905 (0.059) 0
942 (0.054) 1
013 (0.069)
F3 500 0
894 (0.044) 0
937 (0.05) 0
931 (0.081) 0
834 (0.099) 0
941 (0.049) 0
934 (0.085)
F4 1�000 0
938 (0.021) 0
931 (0.045) 0
960 (0.049) 0
904 (0.045) 0
934 (0.043) 0
966 (0.052)
F5 1�000 0
895 (0.021) 0
898 (0.022) 0
913 (0.034) 0
883 (0.030) 0
900 (0.021) 0
916 (0.036)
F6 1�000 0
927 (0.025) 0
937 (0.028) 0
940 (0.037) 0
922 (0.024) 0
936 (0.029) 0
938 (0.037)
F7 4�000 0
948 (0.013) 0
959 (0.021) 0
959 (0.028) 0
941 (0.016) 0
959 (0.021) 0
959 (0.029)
F8 4�000 0
941 (0.009) 0
959 (0.019) 0
953 (0.031) 0
936 (0.014) 0
958 (0.019) 0
953 (0.031)
F9 4�000 0
943 (0.014) 0
948 (0.017) 0
946 (0.027) 0
935 (0.014) 0
948 (0.017) 0
945 (0.028)

MARS CRIO

F1 500 0
904 (0.041) 0
921 (0.055) 0
891 (0.065) 0
875 (0.046) 0
938 (0.086) 0
913 (0.070)
F2 500 0
949 (0.025) 0
942 (0.052) 1
011 (0.057) 0
915 (0.027) 0
968 (0.056) 1
032 (0.066)
F3 500 0
927 (0.0276) 0
944 (0.047) 0
934 (0.083) 0
888 (0.028) 0
970 (0.071) 0
961 (0.074)
F4 1�000 0
949 (0.019) 0
931 (0.047) 0
957 (0.048) 0
931 (0.019) 0
943 (0.042) 0
965 (0.050)
F5 1�000 0
903 (0.017) 0
900 (0.024) 0
915 (0.033) 0
887 (0.015) 0
915 (0.021) 0
926 (0.033)
F6 1�000 0
942 (0.018) 0
938 (0.027) 0
936 (0.038) 0
921 (0.018) 0
944 (0.030) 0
945 (0.033)
F7 4�000 0
949 (0.012) 0
958 (0.021) 0
958 (0.028) 0
947 (0.012) 0
963 (0.020) 0
962 (0.028)
F8 4�000 0
943 (0.007) 0
958 (0.019) 0
957 (0.030) 0
940 (0.007) 0
963 (0.019) 0
956 (0.031)
F9 4�000 0
954 (0.012) 0
948 (0.016) 0
943 (0.027) 0
951 (0.013) 0
949 (0.016) 0
947 (0.027)

Note. The corresponding standard deviations are in parentheses.

dimensions is not evident with the current model. Thus, as
it currently stands, if the underlying function is continuous,
perhaps a continuous model would be more appropriate
than CRIO.
Another apparent challenge for CRIO is maintaining

reasonable computation time. Compared to heuristic-based
methods in data mining such as neural networks and clas-
sification trees, CRIO has a much longer running time for
larger data sets due to its use of integer programming.
However, CRIO did have faster running times compared to
the tree-boosting methods in almost all cases, and CRIO
was faster than SVM in certain problems. The implemen-
tation of CRIO can be improved to speed up its running
time. As mentioned earlier, it can implement a tailored
quadratic programming solver for solving the SVM sub-
problems as done in all implementations of SVMs. The
integer programming models for both classification and
regression can be tailored by “implicitly” branching on the
integer variables (Bienstock 1996, Bertsimas and Shioda
2004). Such an implementation will also eliminate the need
for the “big-M” constraints in problems (15) and (17) that
can significantly hamper the computation time of integer

programming problems. In addition, because a provably
optimal solution is not critical in this context, we can pre-
maturely terminate the branch-and-bound procedure, say
at 5% to 10% relative optimality gap or by a time limit.
However, even with all these improvements, CRIO is not
going to beat methods such as classification trees with
respect to time. Thus, this method would be appropriate
only for those who value prediction accuracy over compu-
tation time, which might be the case in areas of medical
and genetic research.
The third major shortcoming of CRIO is its lack of inter-

pretability, such as an ANOVA interpretation. This is a
weakness that is shared by neural networks and SVMs as
well. Unfortunately, there is not much that can be done to
improve this problem for CRIO. Thus, if decision rules or
variable importance information are vital to the data min-
ing application, tools such as classification trees and tree-
boosting methods would be more suitable. However, SVM
is a very popular classification technique in machine learn-
ing even with this shortcoming. Thus, CRIO may find a
similar audience that might find its classification accuracy
more valuable. Also, CRIO is able to handle categorical
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Table 10. Mean squared error of models linear least square regression (LLS), neural networks (NN), GBM, TreeNet™,
MARS, and CRIO on Friedman generated data sets.

Linear least squares Neural networks
Friedman
data n Train Validation Test Train Validation Test

F1 500 1.299 (0.135) 1.485 (0.159) 1.370 (0.227) 1.245 (0.151) 1.389 (0.174) 1.303 (0.193)
F2 500 1.353 (0.057) 1.428 (0.127) 1.619 (0.165) 1.300 (0.126) 1.355 (0.129) 1.544 (0.119)
F3 500 1.286 (0.087) 1.466 (0.154) 1.498 (0.237) 1.245 (0.095) 1.401 (0.130) 1.442 (0.250)
F4 1�000 1.446 (0.053) 1.426 (0.111) 1.515 (0.124) 1.426 (0.066) 1.403 (0.119) 1.489 (0.122)
F5 1�000 1.342 (0.056) 1.378 (0.073) 1.416 (0.095) 1.295 (0.069) 1.334 (0.069) 1.356 (0.082)
F6 1�000 1.389 (0.042) 1.421 (0.081) 1.423 (0.105) 1.387 (0.045) 1.401 (0.083) 1.396 (0.102)
F7 4�000 1.442 (0.035) 1.471 (0.067) 1.482 (0.086) 1.431 (0.036) 1.455 (0.068) 1.469 (0.088)
F8 4�000 1.427 (0.014) 1.498 (0.051) 1.482 (0.074) 1.412 (0.015) 1.485 (0.054) 1.469 (0.069)
F9 4�000 1.439 (0.037) 1.432 (0.047) 1.427 (0.072) 1.433 (0.037) 1.428 (0.047) 1.417 (0.073)

GBM TreeNet™

F1 500 1.32 (0.158) 1.388 (0.177) 1.308 (0.198) 1.305 (0.193) 1.390 (0.174) 1.304 (0.195)
F2 500 1.367 (0.062) 1.358 (0.13) 1.551 (0.128) 1.279 (0.167) 1.359 (0.128) 1.577 (0.147)
F3 500 1.308 (0.082) 1.402 (0.128) 1.442 (0.248) 1.161 (0.204) 1.396 (0.126) 1.447 (0.248)
F4 1�000 1.449 (0.061) 1.403 (0.121) 1.492 (0.122) 1.395 (0.100) 1.408 (0.120) 1.500 (0.122)
F5 1�000 1.331 (0.054) 1.335 (0.07) 1.358 (0.084) 1.287 (0.085) 1.335 (0.068) 1.372 (0.086)
F6 1�000 1.398 (0.048) 1.402 (0.083) 1.401 (0.102) 1.397 (0.034) 1.406 (0.085) 1.405 (0.101)
F7 4�000 1.434 (0.035) 1.451 (0.07) 1.464 (0.09) 1.430 (0.043) 1.452 (0.070) 1.465 (0.091)
F8 4�000 1.421 (0.017) 1.483 (0.053) 1.467 (0.071) 1.414 (0.021) 1.483 (0.054) 1.468 (0.070)
F9 4�000 1.419 (0.034) 1.422 (0.047) 1.42 (0.074) 1.399 (0.031) 1.422 (0.048) 1.416 (0.073)

MARS CRIO

F1 500 1.350 (0.142) 1.399 (0.180) 1.313 (0.205) 1.313 (0.153) 1.419 (0.232) 1.356 (0.234)
F2 500 1.383 (0.065) 1.358 (0.129) 1.545 (0.119) 1.347 (0.065) 1.445 (0.144) 1.617 (0.155)
F3 500 1.339 (0.079) 1.417 (0.135) 1.451 (0.245) 1.301 (0.091) 1.498 (0.190) 1.534 (0.232)
F4 1�000 1.467 (0.052) 1.403 (0.120) 1.489 (0.122) 1.451 (0.053) 1.444 (0.103) 1.512 (0.137)
F5 1�000 1.339 (0.053) 1.338 (0.074) 1.359 (0.080) 1.319 (0.051) 1.375 (0.064) 1.391 (0.085)
F6 1�000 1.411 (0.046) 1.406 (0.081) 1.401 (0.103) 1.400 (0.048) 1.439 (0.088) 1.438 (0.108)
F7 4�000 1.439 (0.036) 1.451 (0.069) 1.463 (0.090) 1.439 (0.035) 1.462 (0.068) 1.474 (0.089)
F8 4�000 1.422 (0.015) 1.482 (0.053) 1.466 (0.070) 1.419 (0.017) 1.493 (0.054) 1.473 (0.072)
F9 4�000 1.442 (0.037) 1.424 (0.046) 1.415 (0.073) 1.441 (0.039) 1.428 (0.047) 1.427 (0.071)

Note. The corresponding standard deviations are in parentheses.

variables unlike SVMs, which might be an additional ben-
efit in certain applications.

6. Conclusions
CRIO represents a new approach to solving classification
and regression problems. The key components of CRIO

Table 11. Average CPU time of linear least square
regression (LLS), neural networks (NN),
GBM, TreeNet™, MARS, and CRIO on the
Friedman generated data sets.

Data LLS NN GBM TreeNet™ MARS CRIO

F1 0 0.159 0.145 +3
427�37
97, 0
476 6
389
F2 0 0.146 0.122 +4
604�38
93, 0
421 6
310
F3 0 0.171 0.155 +3
483�37
84, 0
54 6
620
F4 0 0.298 0.168 +4
792�38
10, 1
109 44
36
F5 0
001 0.290 0.165 +5
412�38
44, 1
25 52
30
F6 0 0.284 0.177 +5
341�38
36, 1
45 59
35
F7 0
001 4.711 0.511 +16
25�42
78, 3
525 3,307
F8 0
001 4.701 0.365 +16
35�42
79, 3
778 3,029
F9 0
001 4.671 0.894 +15
37�42
25, 1
529 3,181

include (1) clustering methods to reduce dimensionality;
(2) nonlinear transformations of the variables to improve
predictive power; (3) mixed-integer optimization methods
to simultaneously group points together and eliminate out-
lier data; and (4) continuous optimization methods (linear
and quadratic optimization) to represent groups by polyhe-
dral regions.
While clustering, nonlinear transformations, and contin-

uous optimization methods have been used for these prob-
lems before, we believe that the key contribution of CRIO
is its use of mixed-integer optimization methods. In con-
trast to the heuristic character of decision tree methods,
CRIO produces splits of the explanatory variable space into
disjoint regions in a globally optimal manner.
While more testing is clearly needed, we believe that the

preliminary evidence on generated and widely circulated
real data sets is encouraging because CRIO has matched
and often outperformed current popular methods on these
data sets. More generally, we hope that these encourag-
ing results will motivate the statistics, data mining, and
machine learning community to re-examine integer opti-
mization methods as a viable tool in statistical computing.
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Table 12. Mean absolute error of models linear regression (LLS), neural networks (NN), GBM, TreeNet™, MARS, and
CRIO on Boston, Abalone, and Auto data sets.

Real data Linear least squares Neural networks

Data set n d Train Validation Test Train Validation Test

Boston 506 13 3.278 (0.233) 3.424 (0.232) 3.489 (0.325) 2.023 (0.075) 2.808 (0.283) 2.884 (0.253)
Abalone 4�177 7 1.619 (0.027) 1.642 (0.039) 1.667 (0.046) 1.572 (0.025) 1.598 (0.052) 1.611 (0.060)
Auto 392 7 2.532 (0.079) 2.533 (0.153) 2.601 (0.224) 1.673 (0.048) 2.494 (0.174) 2.698 (0.408)

GBM TreeNet™

Boston 506 13 1.905 (0.140) 2.593 (0.227) 2.642 (0.175) 2.090 (0.124) 2.728 (0.268) 2.839 (0.239)
Abalone 4�177 7 1.611 (0.028) 1.696 (0.044) 1.714 (0.036) 0.524 (0.015) 0.547 (0.048) 0.554 (0.057)
Auto 392 7 1.639 (0.093) 2.051 (0.192) 2.083 (0.138) 1.642 (0.083) 2.070 (0.174) 2.092 (0.156)

MARS CRIO

Boston 506 13 2.179 (0.231) 2.693 (0.195) 2.706 (0.252) 2.120 (0.119) 2.606 (0.226) 2.625 (0.181)
Abalone 4�177 7 1.507 (0.021) 1.563 (0.032) 1.575 (0.039) 1.482 (0.027) 1.513 (0.040) 1.536 (0.037)
Auto 392 7 1.994 (0.139) 2.088 (0.150) 2.152 (0.158) 1.856 (0.138) 2.055 (0.231) 2.095 (0.094)

Note. The corresponding standard deviations are in parentheses.

Table 13. Mean squared error of models linear least square regression (LLS), neural networks (NN), GBM, TreeNet™,
MARS, and CRIO on Boston, Abalone, and Auto data sets.

Real data Linear least squares Neural networks

Data set n d Train Validation Test Train Validation Test

Boston 506 13 23
374 �3
292� 27
778 �5
180� 26
032 �6
503� 7
812 �0
068� 16
534 �3
680� 16
442 �3
773�
Abalone 4�177 8 4
959 �0
189� 5
316 �0
345� 5
291 �0
463� 4
778 �0
102� 4
941 �0
293� 4
942 �0
449�
Auto 392 7 11
437 �0
609� 11
334 �1
387� 12
057 �1
920� 5
052 �0
065� 12
257 �1
971� 15
988 �5
872�

GBM TreeNet™

Boston 506 13 7
281 �1
715� 15
496 �4
055� 17
80 �4
090� 7
794 �1
233� 15
784 �4
601� 17
772 �3
990�
Abalone 4�177 7 5
065 �0
160� 5
692 �0
277� 5
657 �0
435� 0
655 �0
089� 0
973 �0
148� 0
929 �0
181�
Auto 392 7 6
079 �0
878� 8
267 �1
925� 8
752 �0
935� 4
985 �0
564� 8
052 �1
762� 8
252 �1
375�

MARS CRIO

Boston 506 13 8
486 �2
114� 15
572 �3
490� 16
756 �5
086� 10
685 �1
785� 13
875 �3
393� 14
226 �4
925�
Abalone 4�177 8 4
347 �0
156� 4
786 �0
253� 4
778 �1
342� 4
571 �0
145� 4
785 �0
267� 4
794 �0
381�
Auto 392 7 7
457 �0
975� 8
226 �1
139� 8
912 �1
427� 7
300 �1
408� 8
641 �1
463� 9
872 �1
930�

Note. The corresponding standard deviations are in parentheses.

Table 14. Average CPU time of linear least square
regression (LLS), neural networks (NN),
GBM, TreeNet™, MARS, and CRIO on the
Boston, Abalone, and Auto data sets.

Data LLS NN GBM TreeNet™ MARS CRIO

Boston 0.000 1
092 1.369 +8
813�36
671, 0.358 0
537
Abalone 0.000 13
103 6.472 +26
67�43
609, 7.661 148
36
Auto 0.000 0
824 0.347 +8
403�39
679, 0.182 0
132

Endnotes
1. We use the word group to mean a collection of points
and the word region to mean a polyhedron that contains a
group.
2. Note that in classification, the regions Pk also do not
form a partition of �d, but if a point x0 belongs to any of

the regions Pk, we classify it as Class 1; and if it does not
belong to any of the regions Pk, we classify it as Class 0.
3. Given a collection � of points, the statistical distance
between points x ∈� ⊆�d and z ∈� ⊆�d is defined as

d� �x� z�=
√√√√ d∑

j=1

�xj − zj�
2

s2j
�

where s2j is the sample variance of the jth coordinate of all
points in � . Statistical distance is a widely accepted metric
in data mining to measure the proximity of points.
4. SVMfu is a freeware developed by Ryan Rifkin from
MIT that implements SVMs with linear, polynomial, and
Gaussian kernels. It can be downloaded from http://five-
percent-nation.mit.edu/SvmFu/.
5. CRUISE is a freeware developed by Hyung Joong Kim
and Wei-Yin Loh (http://www.stat.wisc.edu/∼loh/cruise.
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html). We also tested CART from Salford Systems, but
CRUISE was comparable or outperformed the former in
every case. Thus, we present only the performance of
CRUISE in this paper.
6. CPLEX 8.0 is a product of ILOG (http://www.ilog.com/
products/cplex/).
7. TreeNet™ reports the mean CPU seconds for every 10
trees. Because only the first two decimal places are shown
(often being 0.00), we could not compute the exact total
CPU seconds. However, we can clearly find the lower and
upper bound of the total running time from this informa-
tion.
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